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Abstract
In a previous work a random matrix average for the Laguerre unitary ensemble,
generalizing the generating function for the probability that an interval
(0, s) at the hard edge contains k eigenvalues, was evaluated in terms of a
Painlevé V transcendent in σ -form. However, the boundary conditions for the
corresponding differential equation were not specified for the full parameter
space. Here this task is accomplished in general, and the obtained functional
form is compared against the most general small s behaviour of the Painlevé
V equation in σ -form known from the work of Jimbo. An analogous study
is carried out for the hard edge scaling limit of the random matrix average,
which we have previously evaluated in terms of a Painlevé III′ transcendent in
σ -form. An application of the latter result is given to the rapid evaluation of
a Hankel determinant appearing in a recent work of Conrey, Rubinstein and
Snaith relating to the derivative of the Riemann zeta function.

PACS numbers: 02.10.Yn, 02.30.Hq
Mathematics Subject Classification: 15A52, 34M55

1. Introduction

The Laguerre unitary ensemble (LUEN) refers to the eigenvalue probability density function
(p.d.f.)

1

N !CN,a

N∏
l=1

λa
l e−λl

∏
1�j<k�N

(λk − λj )
2, (1.1)

where

CN,a :=
N−1∏
j=0

�(j + 1)�(j + a + 1), (1.2)
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with support on λl ∈ [0,∞). For a ∈ Z�0, this eigenvalue p.d.f. is realized by non-negative
matrices X†X where X is an M × N complex Gaussian matrix and a = M − N . In our work
[3] the average over (1.1)

Ẽ2,N ((0, s); a, µ; ξ) := CN,a

CN,a+µ

〈
N∏

l=1

(
1 − ξχ

(l)

(0,s)

)
(λl − s)µ

〉
LUEN

, (1.3)

where χ
(l)
J = 1 for λl ∈ J, χ

(l)
J = 0 otherwise, and the normalization is chosen so that

Ẽ2,N ((0, s); a, µ; ξ)|s=0 := 1 (1.4)

was characterized as a τ -function for the Painlevé V system. As a consequence, it was shown
that

WN(s; a, µ; ξ) := s
d

ds
log(s−NµẼ2,N ((0, s); a, µ; ξ)) (1.5)

satisfies the Jimbo–Miwa–Okamoto σ -form of the Painlevé V equation

(sσ ′′
V )2 −


σV − sσ ′

V + 2(σ ′
V )2 +


 3∑

j=0

νj


 σ ′

V




2

+ 4
3∏

j=0

(νj + σ ′
V ) = 0, (1.6)

with

ν0 = 0, ν1 = −µ, ν2 = N + a, ν3 = N,

3∑
j=0

νj = 2N + a − µ. (1.7)

For this to uniquely characterize WN , a boundary condition must be specified. However in [3]
only in the cases µ = 0 and µ = 2 was a boundary condition specified for general ξ .

Also considered in [3] (see equation (1.69) of [3]) was the hard edge limiting average

Ẽhard
2 (t; a, µ; ξ) := lim

N→∞
Ẽ2,N

((
0,

t

4N

)
; a, µ; ξ

)
. (1.8)

It was shown that

Ẽhard
2 (t; a, µ; ξ) = exp

∫ t

0
uh(s; a, µ; ξ)

ds

s
, (1.9)

where setting

uh(s; a, µ; ξ) = −
(

σIII′(s) +
µ(µ + a)

2

)
, (1.10)

the function σIII′(s) satisfies the Jimbo–Miwa–Okamoto σ -form of the Painlevé III′ equation

(sσ ′′
III′)

2 − v1v2(σ
′
III′)

2 + σ ′
III′(4σ ′

III′ − 1)(σIII′ − sσ ′
III′) − 1

43
(v1 − v2)

2 = 0, (1.11)

with parameters

v1 = a + µ, v2 = a − µ. (1.12)

Again only in the cases µ = 0 and µ = 2 were boundary conditions specified for general ξ .
The aim of this work is to specify the boundary conditions relevant to both (1.5) and (1.6)

for general values of the parameters. In the case of (1.5) this is done by writing the average
(1.3) in its equivalent determinant form and evaluating the matrix elements in terms of certain
1F1 hypergeometric functions. With the small s behaviour of the matrix elements determined,
it turns out that the determinant is such that its corresponding small s behaviour can readily
be deduced. The small s asymptotic form of (1.3) then follows immediately. Scaling this
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asymptotic form as required by (1.8) then gives the small t behaviour of Ẽhard
2 (t; a, µ; ξ) and

the small s behaviour of uh(s; a, µ; ξ).
The general small s asymptotic form of the permitted solutions of (1.6) and (1.11) has been

given by Jimbo [5]. As part of this study the boundary conditions found here are compared
against these general forms. It is found that in both cases only one of the two branches
permitted by the general solution is present in our random matrix problem.

As an application of our results we specify the rapid computation of the power series
expansion of a certain Hankel determinant of Bessel functions. The latter is known from our
work [3] to be a special case of Ẽhard

2 (t; a, µ; ξ). The coefficients in the power series appear in
an asymptotic formula obtained recently by Conrey, Rubinstein and Snaith [1] for the integer
moments of the derivative of the characteristic polynomial of a unitary random matrix. This
in turn has application to the study of the derivative of the Riemann zeta function on the
critical line.

2. Small s expansion of Ẽ2,N ((0, s); a, µ; ξ)

A standard result in random matrix theory, which in fact goes back to an identity of Heine (see
[7]) expresses the random matrix average (1.3) as a determinant

Ẽ2,N ((0, s); a, µ; ξ) = 1

CN,a+µ

det[wj+k]j,k=0,...,N−1, (2.1)

where

wn :=
∫ ∞

0
dλ(1 − ξχ(0,s))(λ − s)µλn+a e−λ. (2.2)

Unless µ is a non-negative integer (2.2) is not well defined for s real and positive, which is the
domain of interest. To remedy this, we note that the simple manipulation gives

wn =
∫ ∞

s

dλ(λ − s)µλn+a e−λ + (1 − ξ)

∫ s

0
dλ(λ − s)µλn+a e−λ, (2.3)

and in the second integral of this expression write (λ − s)µ = eµ log(λ−s) with −π <

arg log(λ − s) � π . We then obtain

wn =
∫ ∞

s

dλ(λ − s)µλn+a e−λ + (1 − ξ) eπ iµ
∫ s

0
dλ(s − λ)µλn+a e−λ, (2.4)

which is well defined for Re(µ) > −1 and Re(a) > −1 for s > 0 with the additional
constraint Re(µ + a) > −1 at s = 0.

We seek the leading terms in the small s expansion of (2.4). These can be read off from
an explicit evaluation in terms of the 1F1 confluent hypergeometric function [8].

Proposition 2.1. Subject to the conditions Re(µ) > −1, Re(a) > −1, Re(µ + a) > −1 and
µ + a /∈ Z�0 we have

wn = an(s) + sn+µ+a+1bn(s), (2.5)

where an(s), bn(s) are analytic about s = 0 and given explicitly by

an(s) = �(µ + n + a + 1) e−s
1F1(−a − n;−µ − a − n; s),

bn(s) = �(µ + 1)�(n + a + 1)

�(µ + n + a + 2)

(
(1 − ξ) eπ iµ − sin πa

sin π(µ + a)

)
× e−s

1F1(µ + 1;µ + a + n + 2; s).

(2.6)
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In particular, under the above conditions,

wn ∼
s→0

an(0) + sa′
n(0) + sn+µ+a+1bn(0), (2.7)

where

an(0) = �(µ + n + a + 1),

a′
n(0) = −µ�(µ + n + a),

bn(0) = �(µ + 1)�(n + a + 1)

�(µ + n + a + 2)

(
(1 − ξ) eπ iµ − sin πa

sin π(µ + a)

)
.

(2.8)

Proof. Results (2.7) and (2.8) are immediate corollaries of (2.5) and (2.6) and the fact that

1F1(γ ;α; s) = 1 +
γ

α
s + O(s2).

To derive (2.5), we note that a simple manipulation shows∫ ∞

s

dλ(λ − s)µλn+a e−λ = sa+n e−s

∫ ∞

0
dλ(1 + λ/s)n+aλµ e−λ.

But with (see section 16.12 of [8])

Wk,m(z) = zk e−z/2

�(1/2 − k + m)

∫ ∞

0
dt (1 + t/z)k−1/2+mt−k−1/2+m e−t ,

specifying the Whittaker function, it is known from section 16.41 of [8] that

Wk,m(z) = �(−2m)

�(1/2 − k − m)
Mk,m(z) +

�(2m)

�(1/2 − k + m)
Mk,−m(z)

where (see section 16.1 of [8])

Mk,m(z) = zm+1/2 e−z/2
1F1(1/2 − k + m; 2m + 1; z).

Consequently∫ ∞

s

dλ(λ − s)µλn+a e−λ = �(µ + a + n + 1) e−s
1F1(−a − n;−µ − a − n; s)

+
�(µ + 1)�(−µ − a − n − 1)

�(−a − n)
sµ+a+n+1 e−s

1F1(µ + 1;µ + a + n + 2; s).

(2.9)

The left-hand side of (2.9) exists for Re(µ) > −1 if s > 0 and Re(µ + a) > −1 if s = 0,
whereas the right-hand side is valid in this parameter domain except for µ + a + n ∈ Z�0, and
in this case the individual terms have a simple pole at a + n /∈ Z�0 or are undefined when
a +n ∈ Z�0. Needless to say the sum of the terms on the right-hand side has the same analytic
character as the left-hand side.

Regarding the second integral in (2.4), we first note that a simple change of variables
gives ∫ s

0
dλ(s − λ)µλn+a e−λ = sn+1+a+µ e−s

∫ 1

0
dx(1 − x)n+axµ esx .

But the integral on the right-hand side is the Euler integral representation of the 1F1 function,
which shows∫ s

0
dλ(s − λ)µλn+a e−λ = �(µ + 1)�(a + n + 1)

�(µ + a + n + 2)
sµ+a+n+1 e−s

1F1(µ + 1;µ + a + n + 2; s).

(2.10)
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This latter relation is valid for Re(µ) > −1 and Re(a) > −1 when s > 0. Substituting (2.9)
and (2.10) into (2.4) and using the appropriate gamma function identities gives (2.5), (2.6).

�

When µ + a ∈ Z�0 we have to consider two exceptional cases where one of
the hypergeometric functions is not defined—the first when a + n ∈ Z�0 for which
the hypergeometric function is indeterminate, and the second when a + n /∈ Z�0 and the
hypergeometric function has a simple pole. These two cases can be recovered by taking
suitable limits and we just state the final results.

Proposition 2.2. When µ + a = j ∈ Z�0 and a + n = k ∈ Z�0 with n + j � k we have

wn = k! e−s

{
k∑

l=0

(n + j − l)!

(k − l)!l!
sl + (−1)n+j+k(1 − ξ)

× (n + j − k)!

(n + j + 1)!
sn+j+1

1F1(n + j + 1 − k; n + j + 2; s)

}
, (2.11)

and to leading order in small s we have

wn ∼
s→0

(n + j)! − (n + j − k)(n + j − 1)!s + (−1)n+j+k(1 − ξ)
(n + j − k)!k!

(n + j + 1)!
sn+j+1. (2.12)

Note that the condition n + j � k is the same as µ � 0, which falls within the domain
of interest. The key difference of (2.12) with (2.7) and (2.8) is that the non-analytic term
is now polynomial and the second part of this term is absent having been cancelled by a
counterbalancing term.

Proposition 2.3. When µ + a = j ∈ Z�0 and a + n /∈ Z�0 we have

wn = e−s

{
n+j∑
l=0

(−a − n)l(n + j − l)!

l!
(−s)l

+
�(µ + 1)�(a + n + 1)

(n + j + 1)!
(1 − ξ) eiπµsn+j+1

1F1(µ + 1; n + j + 2; s)

+ (−1)j
sin πa

π

�(µ + 1)�(a + n + 1)

(n + j + 1)!
sn+j+1

×
∞∑
l=0

[ψ(l + 1) + ψ(n + j + l + 2) − ψ(µ + l + 1) − log s]
(µ + 1)l

(n + j + 2)l

sl

l!

}
,

(2.13)

and its leading order behaviour for small s is

wn ∼
s→0

(n + j)! + (a − j)(n + j − 1)!s +
(a − j)n+j+1

(n + j + 1)!
sn+j+1

×
[
π e−iπa

sin πa
(1 − ξ) + ψ(1) + ψ(n + j + 2) − ψ(µ + 1) − log s

]
. (2.14)

Here (a)l := a(a + 1) . . . (a + l − 1) is the Pochhammer symbol and ψ(z) is the logarithmic
derivative of the gamma function.

Expansion (2.14) differs significantly from (2.7) and (2.8) because of the presence of
logarithmic terms which now replace the non-analytic contributions of the generic case.



8988 P J Forrester and N S Witte

Corollary 2.1. Under generic conditions on µ + a we have

det[wj+k]j,k=0,...,N−1 = det[�(µ + a + 1 + j + k)]j,k=0,...,N−1

−µs det[�(µ + a + j), [�(µ + a + 1 + j + k)]k=1,...,N−1]j=0,...,N−1 + O(s2)

+ sµ+a+1b0(0) det[�(µ + a + 3 + j + k)]j,k=0,...,N−2{1 + O(s)} + O(s2(µ+a+1)).

(2.15)

Proof. According to (2.7)

det[wj+k]j,k=0,...,N−1 ∼
s→0

det[aj+k(0) + sa′
j+k(0) + sµ+a+1+j+kbj+k(0)]j,k=0,...,N−1

∼
s→0

det[aj+k(0)]j,k=0,...,N−1 + s[s] det[aj+k(0) + sa′
j+k(0)]j,k=0,...,N−1

+ sµ+a+1b0(0) det[aj+k+2(0)]j,k=0,...,N−2,

where [s]P(s) denotes the coefficient of s in P(s). Recalling the explicit formula for an(0)

as given in (2.8) we obtain the constant term and the term proportional to sµ+a+1 in (2.15). It
remains to compute the coefficient of s, which according to (2.8) has the explicit form

[s] det[�(µ + a + 1 + j + k) − µs�(µ + a + j + k)]j,k=0,...,N−1. (2.16)

Using the linearity formula

det[a1 · · · aj + bj · · · an] = det[a1 · · · aj · · · an] + det[a1 · · · bj · · · an],

where the a’s and b’s are column vectors, on each column of the determinant we see that of
the terms proportional to s only the one obtained from expanding the first column is non-zero
(all the rest result in two identical columns), and the determinant given by (2.15) results. �

It remains to evaluate the determinants. For this task we make use of the identity [6]

det[�(zk + j)]j,k=0,...,n−1 =
n−1∏
j=0

�(zj )
∏

0�j<k�n−1

(zk − zj ).

After straightforward manipulations, gamma function evaluations of all the determinants in
(2.15) can be obtained. Substituting into (2.1), and recalling that the normalization is such
that at s = 0 ẼN is equal to unity, we obtain the sought small s expansion of ẼN and thus WN

valid for general values of the parameters.

Proposition 2.4. For Re(µ) > −1, Re(a) > −1 and µ + a /∈ Z�0 we have

Ẽ2,N ((0, s); a, µ; ξ) = 1 − µN

µ + a
s + O(s2) +

�(µ + 1)�(a + 1)�(µ + a + N + 1)

�2(µ + a + 2)�(µ + a + 1)�(N)

×
(

(1 − ξ) eπ iµ − sin πa

sin π(µ + a)

)
sµ+a+1{1 + O(s)} + O(s2(µ+a+1)), (2.17)

and consequently

WN(s; a, µ; ξ) = −Nµ − µN

µ + a
s + O(s2) +

�(µ + 1)�(a + 1)�(µ + a + N + 1)

�(µ + a + 2)�2(µ + a + 1)�(N)

×
(

(1 − ξ) eπ iµ − sin πa

sin π(µ + a)

)
sµ+a+1{1 + O(s)} + O(s2(µ+a+1)). (2.18)

In the first exceptional case µ + a = j ∈ Z�0 and a = k ∈ Z�0 with j � k one can still
use (2.17) but omitting the term involving the ratio of sines, in the case j = 0, or the whole
term containing sµ+a+1 if j > 0. The situation of the other exceptional case µ + a = j ∈ Z�0
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and a /∈ Z�0 is more complicated and more so for larger j , and we only give the examples of
j = 0, 1.

Proposition 2.5. For Re(µ) > −1, Re(a) > −1 with µ + a = 0 we have

Ẽ2,N ((0, s); a, µ = −a; ξ) = 1 +

{
−1 +

πa

sin πa
e−iπa(1 − ξ)

+ a[2ψ(2) + ψ(1) − ψ(1 − a) − ψ(N + 1) − log s]

}
Ns + o(s). (2.19)

For µ + a = 1 we have

Ẽ2,N ((0, s); a, µ = 1 − a; ξ) = 1 + (a − 1)Ns +
a(a − 1)

4

{
π

sin πa
e−iπa(1 − ξ) + 2ψ(3)

+ ψ(2) − ψ(2 − a) − ψ(N + 2) − log s

}
(N + 1)Ns2 + o(s2). (2.20)

3. Comparison with the Jimbo solution

The small s expansion of the most general solution permitted by (1.6), or more precisely
its corresponding τ -function (see (3.2)) has been determined by Jimbo [5]. However in [5]
equation (1.6) is not treated directly. Instead the discussion is based on the equation

(sζ ′′)2 − [ζ − sζ ′ + 2(ζ ′)2 − (2θ0 + θ∞)ζ ′]2

+ 4ζ ′(ζ ′ − θ0)

(
ζ ′ − 1

2
(θ0 − θs + θ∞)

) (
ζ ′ − 1

2
(θ0 + θs + θ∞)

)
= 0, (3.1)

and the small s behaviour of the corresponding τ -function τV (s), specified by the requirement
that

ζ(s) = s
d

ds
log τV (s) +

1

2
(θ0 + θ∞)s +

1

4

[
(θ0 + θ∞)2 − θ2

s

]
, (3.2)

was determined.
Comparison of (3.1), (3.2) with (1.6), (1.5) shows that for the parameters (1.7)

Ẽ2,N ((0, s); a, µ; ξ) = sN2+N(a+µ) e−(N+a/2)sτV (s), (3.3)

while in general

θ0 = −ν1, θs = ν2 − ν3, θ∞ = ν1 − ν2 − ν3. (3.4)

Note that for the parameters (1.7) we thus have

θ0 = µ, θs = a, θ∞ = −2N − a − µ. (3.5)

The relevant result from [5] can now be presented. It states that the most general small s
behaviour of τV (s) permitted by equation (3.1) is

τV (s) = Cs(σ 2−θ2
∞)/4

{
1 − θ∞

(
θ2
s − θ2

0 + σ 2
)

4σ 2
s

+ u
�2(−σ)

�2(2 + σ)

�
(
1 + θs+θ0+σ

2

)
�

(
1 + θs−θ0+σ

2

)
�

(
1 + θ∞+σ

2

)
�

(
θs+θ0−σ

2

)
�

(
θs−θ0−σ

2

)
�

(
θ∞−σ

2

) s1+σ

+
1

u

�2(σ )

�2(2 − σ)

�
(
1 + θs+θ0−σ

2

)
�

(
1 + θs−θ0−σ

2

)
�

(
1 + θ∞−σ

2

)
�

(
θs+θ0+σ

2

)
�

(
θs−θ0+σ

2

)
�

(
θ∞+σ

2

) s1−σ

+ O(|s|2(1−Re(σ )))

}
, (3.6)
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where C is a normalization constant, while u and σ are arbitrary parameters. The above result
was derived subject to the conditions θ0, θs /∈ Z, 1

2 (θ∞ ± σ) /∈ Z, 1
2 (θs ± θ0 ± σ) /∈ Z and

that 0 < Re(σ ) < 1 (a distinct solution was presented for σ = 0). These conditions therefore
strictly apply only to the generic or transcendental solutions of the fifth Painlevé equation. For
generic parameter values the terms given in (3.6) uniquely specify all the subsequent terms in
the convergent Puisuex-type expansion for ζ(s) about s = 0

ζ(s) =
∞∑

j=0

∑
|k|�j

cj,ks
j+kσ , (3.7)

i.e. with any two of c1,0, c1,1 or c1,−1 given.
To relate this to Ẽ2,N , we see from (3.3) and (3.5) that we require σ 2 = (a + µ)2 and thus

we can choose

σ = a + µ. (3.8)

This relation, σ = θ0 + θs , is a violation of one of the strict conditions given above and
is in fact a sufficient condition for a classical solution, along with the necessary condition
θ0 +θs +θ∞ = −2N ∈ Z, which is the type of solution that we are dealing with here. However,
we conjecture that Jimbo’s conditions can be relaxed to accommodate such solutions and the
corresponding formulae (or limiting forms if necessary) still hold. With this choice of σ the
coefficient of s1−σ in (3.6) contains a factor of

1

�
(

θ∞+σ
2

) = 1

�(−N)

and thus vanishes. Simplifying the other terms gives

τV (s) ∼ Cs−N2−N(a+µ)

{
1 +

(2N + a + µ)a

2(a + µ)
s

+ u
sin πµ

sin π(a + µ)

�(a + 1)�(µ + 1)�(N + 1 + a + µ)

�2(2 + a + µ)�(1 + a + µ)�(N)
s1+a+µ

}
.

Substituting into (3.3) we see that this is in precise agreement with (2.17) provided we choose

u
sin πµ

sin π(a + µ)
= (1 − ξ) eπ iµ − sin πa

sin π(a + µ)
(3.9)

4. The hard edge limit

The hard edge limit is defined by (1.8). However, only in the cases µ = 0, µ = 2 do we
know how to prove its existence for general ξ (in the case µ = 0 Ẽ2,N can be written as a
Fredholm determinant, while the case µ = 2 is related to this via differentiation). However a
log-gas viewpoint ([2]) indicates that the limit will be well defined, and moreover we expect
that it can be taken term-by-term in the small s expansion of Ẽ2,N . In this section, we will
show that taking the hard edge limit of the small s expansion (2.17) gives rise to an initial
condition for the solution of (1.11) consistent with that allowed by Jimbo’s theory of the small
s expansion of the Painlevé III′ equation. From a practical perspective this specifies Ẽhard

2 for
general values of the parameters according to (1.9), while from a theoretical viewpoint it lends
weight to the belief that (1.9) is indeed the correct limiting evaluation for general values of
the parameters.

Under the assumption that the hard edge limit can be taken term-by-term in the small s
expansion of proposition (2.4) the following corollary is immediate.
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Corollary 4.1. For Re(µ) > −1, Re(a) > −1 and µ + a /∈ Z�0 we have

Ẽhard
2 (s; a, µ; ξ) = 1 − µ

4(a + µ)
s + O(s2) +

�(µ + 1)�(a + 1)

�2(µ + a + 2)�(µ + a + 1)

×
(

(1 − ξ) eπ iµ − sin πa

sin π(µ + a)

) ( s

4

)µ+a+1
{1 + O(s)} + O(s2(µ+a+1)), (4.1)

and consequently the σ -function σIII′(s) in (1.10) has the small s expansion

σIII′(s) = −µ(µ + a)

2
+

µ

4(µ + a)
s + O(s2) − �(µ + 1)�(a + 1)

�(µ + a + 2)�2(µ + a + 1)

×
(

(1 − ξ) eπ iµ − sin πa

sin π(µ + a)

) ( s

4

)µ+a+1
{1 + O(s)} + O(s2(µ+a+1)). (4.2)

Some examples of exceptional cases not covered by the preceding corollary are the
following. They are obtained by taking the hard edge limit of (2.19) and (2.20).

Corollary 4.2. For Re(µ) > −1, Re(a) > −1 and µ + a = 0 we have

Ẽhard
2 (s; a, µ = −a; ξ) = 1 +

{
−1 +

πa

sin πa
e−π ia(1 − ξ)

+ a[2ψ(2) + ψ(1) − ψ(1 − a) − log(s/4)]

}
s

4
+ o(s), (4.3)

whilst for µ + a = 1 we have

Ẽhard
2 (s; a, µ = 1 − a; ξ) = 1 + (a − 1)

s

4
+

a(a − 1)

4

{
π

sin πa
e−π ia(1 − ξ)

+ 2ψ(3) + ψ(2) − ψ(2 − a) − log(s/4)

} ( s

4

)2
+ o(s2). (4.4)

To compare these results to the small independent variable expansions given by Jimbo in
the theory of III′, we must first undertake some preliminary calculations as equation (1.11) is
not directly studied in [5]. Rather the equation studied is

(tζ ′′)2 = 4ζ ′(ζ ′ − 1)(ζ − tζ ′) +
(v1 + v2

2
− v1ζ

′
)2

, (4.5)

where we have identified θ0 = −v2, θ∞ = −v1 (θ0, θ∞ are the parameters appearing in [5]).
In terms of ζ(t) the τ -function τIII′(t) is specified by the requirement that

ζ(t) = t
d

dt
log τIII′(t) +

v2
2 − v2

1

4
+ t, (4.6)

and it is the small t expansion of τIII′(t) presented in [5]. Comparison of (4.5) and (1.11)
shows that

ζ(t) = −σIII′(s) +
v1(v2 − v1)

4
+

s

4
, t = s

4
. (4.7)

Recalling (1.10), (1.9), (4.7) and (4.6) we see

Ẽhard
2 (s; a, µ; ξ) = t (v

2
2−v2

1 )/4τIII′(t). (4.8)
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In [5] the most general small t expansion of τIII′(t) as permitted by (4.5) is presented. It
reads

τIII′(t) = Ct(σ
2−v2

2 )/4

{
1 +

v1v2 − σ 2

2σ 2
t − u

�2(−σ)

�2(2 + σ)

�
(
1 + v2+σ

2

)
�

(
1 + v1+σ

2

)
�

(
v2−σ

2

)
�

(
v1−σ

2

) t1+σ

− 1

u

�2(σ )

�2(2 − σ)

�
(
1 + v2−σ

2

)
�

(
1 + v1−σ

2

)
�

(
v2+σ

2

)
�

(
v1+σ

2

) t1−σ + O(|t |2(1−Re(σ )))

}
, (4.9)

where as in (3.6) C is a normalization, while u and σ are arbitrary parameters. This result
was established under the assumptions that 1

2 (v1 ± σ) /∈ Z and 1
2 (v2 ± σ) /∈ Z along with

0 < Re σ < 1 (for σ = 0 a distinct solution is given).
To see that this structure is consistent with (4.1) and (4.8), recalling (1.12) we see that for

the right-hand side of (4.8) to tend to 1 as t tends to zero we must have C = 1 and σ = ±v1.
Again this is a violation of first condition given above but we conjecture that the formulae
have meaning under the following limiting procedure and are correct. Choosing the positive
sign for definiteness, and then writing

u

�
(

v1−σ
2

) = u(v1 − σ)

2�
(
1 + v1−σ

2

)
we see that requiring

u

2
(v1 − σ) → ũ

sin πv1

π
as σ → v1,

(4.9) reads

τIII′(t) ∼ t (v
2
1−v2

2 )/4

{
1 +

v1v2 − v2
1

2v2
1

t

+ ũ
sin π(v1 − v2)/2

sin πv1

�
(
1 − v2−v1

2

)
�

(
1 + v2+v1

2

)
�2(2 + v1)�(1 + v1)

(
t

4

)1+v1
}

. (4.10)

Recalling again (1.12) and (4.8) we see that this agrees with (4.1) provided

ũ
sin πµ

sin π(a + µ)
= (1 − ξ) eπ iµ − sin πa

sin π(a + µ)
, (4.11)

(cf (3.9)).

5. Application

In a recent work relating to the application of random matrix theory to the study of moments
of the derivative of the Riemann zeta-function, Conrey, Rubinstein and Snaith [1] obtained
two asymptotic expressions associated with the derivative of characteristic polynomials for
random unitary matrices. With U a Haar distributed element of the unitary group U(N), and
eiθ1 , . . . , eiθN its eigenvalues, let

�A(s) =
N∏

j=1

(1 − s e−iθj ), (5.1)

and

ZA(s) = e−π iN/2 ei
∑N

n=1 θn/2s−N/2�A(s), (5.2)
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(note that ZA(eiθ ) is real for θ real). In terms of this notation, the two results from [1] are

〈|�′
A(1)|2k〉A∈U(N) ∼

N→∞
bkN

k2+2k, (5.3)

where

bk = (−1)k(k+1)/2
k∑

h=0

(
k

h

)
(k + h)![xk+h](e−xx−k2/2 det[Iα+β−1(2

√
x)]α,β=1,...,k), (5.4)

and

〈|Z ′
A(1)|2k〉A∈U(N) ∼

N→∞
b′

kN
k2+2k, (5.5)

where

b′
k = (−1)k(k+1)/2(2k)![x2k](e−x/2x−k2/2 det[Iα+β−1(2

√
x)]α,β=1,...,k). (5.6)

In (5.4) and (5.6) the notation [xp]f (x) denotes the coefficient of xp in f (x).
The relevance of these formulae to the present study is that the determinant therein can

be identified in terms of Ẽhard
2 . Thus, we have shown in a previous study [3] (see section 4.3,

in particular equation (4.31), of this reference) that for a ∈ Z�0

Ẽhard
2 (s; a, µ; ξ = 1) = A(a,µ)

(
2√
s

)aµ

e−s/4 det[Iµ+α−β(
√

s)]α,β=1,...,a. (5.7)

where

A(a,µ) = a!
a∏

j=1

(j + µ − 1)!

j !
. (5.8)

Interchanging row β by row a − β + 1 (β = 1, . . . , a in order) we see from this that

bk = (−1)k

A(k, k)

k∑
h=0

(
k

h

)
(k + h)![xk+h]Ẽhard

2 (4x; k, k; ξ = 1)

b′
k = (−1)k

A(k, k)
(2k)![x2k]

(
ex/2Ẽhard

2 (4x; k, k; ξ = 1)
) (5.9)

Note that the Painlevé III′ parameters appearing in this solution are µ = a = k ∈ N and
µ + a = 2k ∈ 2N and thus we are dealing with the exceptional case of indeterminacy
referred to in section 2. However as was noted there the generic formulae still hold with the
modifications discussed and in particular the σ -function has a small argument expansion of a
purely analytic form.

From [4] it is known that the determinants in (5.4) and (5.6) can also be expressed as
a particular generalized hypergeometric function. Such an observation implies, for instance,
that

x−k2/2 det[Iα+β−1(2
√

x)]α,β=1,...,k =
k∏

j=1

j !

�(j + k)
0F

(1)
1 (; 2k; x1, . . . , xk)|xj =x, (5.10)

where 0F
(1)
1 (; c; x1, . . . , xk) has a series development about x1, . . . , xk = 0 with an explicitly

given coefficient for an arbitrary term. However this is not a practical or efficient way to
compute the coefficients required in (5.4) or (5.6) for moderate or large k as it involves the
hook lengths of Young diagrams associated with the partitions of k.

According to (1.9), (1.11) and (4.2)

Ẽhard
2 (4x; k, k; ξ = 1) = exp

(
−

∫ 4x

0

ds

s
(σIII′(s) + k2)

)
, (5.11)
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where σIII′(s) satisfies the particular σ -Painlevé III′ equation

(sσ ′′
III′)

2 + σ ′
III′(4σ ′

III′ − 1)(σIII′ − sσ ′
III′) − k2

16
= 0, (5.12)

subject to the boundary condition

σIII′(s) ∼
s→0

−k2 +
s

8
+ O(s2), k ∈ N. (5.13)

Substituting

σIII′(s) = η(s) +
s

8
, (5.14)

(5.12) reads

(sη′′)2 + 4

(
(η′)2 − 1

64

)
(η − sη′) − k2

42
= 0. (5.15)

We see immediately that η(s) can be expanded in an even function of s about s = 0,

η(s) =
∞∑

n=0

cns
2n, c0 = −k2, k ∈ N. (5.16)

Moreover the coefficients can be computed by a recurrence relation.

Proposition 5.1. Substituting (5.16) into (5.15) shows

c1 = 1

64(4k2 − 1)
, (5.17)

while for p � 2

cp = 1

2c1p(2p − 1) + (2p − 1)/64 − 8pk2c1

(
4k2

p−2∑
l=1

(l + 1)(p − l)cl+1cp−l

−
p−2∑
l=1

(l + 1)(p − l)(2l + 1)(2p − 2l − 1)cl+1cp−l − 4
p−1∑
l=1

(1 − 2l)clAp−l−1

)
,

(5.18)

where

Aq =
q∑

l=0

(l + 1)(q − l + 1)cl+1cq−l+1. (5.19)

Proof. With hl := (l + 1)(2l + 1)cl+1 we see

(sη′′)2 = 4
∞∑

p=1

Hp−1s
2p, Hp =

p∑
l=0

hlhp−l , (5.20)

and similarly with al := (l + 1)cl+1 we have

(sη′)2 = 4s4
∞∑

p=0

Aps2p, Ap =
p∑

l=0

alap−l .

It follows from this latter result that(
(η′)2 − 1

64

)
(η − sη′) =

∞∑
p=0

Gps2p, (5.21)
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where

Gp =
p∑

l=0

(1 − 2l)clbp−l , b0 = − 1

64
, bp = 4Ap−1 (p � 1).

Substituting (5.20) and (5.21) into (5.15) and equating like coefficients of s2p to zero shows
that for p � 1

Hp−1 + Gp = 0.

This for p = 1 implies (5.17), and for p > 1 implies (5.18). �

Using proposition 5.1 it is straightforward to calculate, via computer algebra, the first k
coefficients in (5.16) for any particular value of k. Furthermore use of computer algebra gives
the power series up to x2k of

Ẽhard
2 (4x; k, k; ξ = 1) and ex/2Ẽhard

2 (4x; k, k; ξ = 1),

according to (5.11). From these power series the formulae (5.9) are used to compute bk and
b′

k . In [1] the first 15 values of both bk and b′
k were tabulated. This can be rapidly extended

using the present method. However the resulting rational numbers quickly become unwieldy
to record. Let us then be content by presenting just the 16th member of the sequences,

b16

= 307 · 235 81 · 928 67 · 760 550 281 759

2272 · 3130 · 566 · 742 · 1124 · 1321 ·1716 · 1914 · 2310 · 296 · 315 · 373 · 412 · 432 · 47 · 53 · 59 · 61
,

b′
16

= 4148 297 603 · 762 307 780 887 058 615 174 845 536 921 721 350 667 133 453 0597

2264 · 3133 · 566 · 742 · 1125 · 1321·1716 · 1914 · 2311 · 297 · 316 · 373 · 412 · 432 · 47 · 53 · 59 · 61
.
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